NRAP Phase II Tools and Workflows

at the 2021 GWPC Annual Forum

September 29, 2021

Short term seismic forecasting – a tool to assess seismicity during injection operations and the RiskCat tool

Corinne Layland-Bachmann (LBNL)

Overview

• Introduction to both STSF and RiskCat

- Tools in a Nutshell
- Background and Context
- How to run to the tools
 - Input / Output
 - Challenges
- Examples

<u>Short Term Seismic Forecasting tool - in a Nutshell</u>

Use observed earthquake catalogs and measured (and/or controllable) injection parameters to forecast earthquake rates

RiskCat tool – in a Nutshell

Use earthquake catalogs – observed or calculated - to determine seismic hazard and risk over the project lifetime

STSF - Background

- Traditionally, induced seismicity projects are monitored with a traffic light systems (TLS)
 - Reacts to single incidents like:
 - Recorded seismic events above threshold
 - Measurement of acceleration / ground motion above threshold
 - Public response
- New system that incorporates all recorded seismicity
 - Adapt established seismic model to induced seismicity
 - Incorporate injection parameter to calculate influence on rates

STSF - Future

New release planned for end of Phase II

 Current model includes one statistical model

> Epidemic type aftershock model (ETAS)

• Include a suite of models

Injection Data + Microseismic Catalog

- Epidemic Type Aftershock Sequence Model (ETAS)
- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model

- Epidemic Type Aftershock Sequence Model (ETAS)
- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model
 - Mainshock triggers aftershocks

- Epidemic Type Aftershock Sequence Model (ETAS)
- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model
 - Mainshock triggers aftershocks
 - Aftershocks can trigger aftershocks

- Epidemic Type Aftershock Sequence Model (ETAS)
- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model
 - Mainshock triggers aftershocks
 - Aftershocks can trigger aftershocks
 - After and mainshock are purely temporal terms. If aftershocks are larger than main shocks, there is often a reclassification to foreshock / mainshock.

- Epidemic Type Aftershock Sequence Model (ETAS)
- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.

K, α = productivity parameters c = delay term (time) p = decay term

$$\lambda_i(t) = \frac{K}{(c+t-t_i)^p} 10^{\alpha(M_i - M_{\min})}$$

 $\lambda(t) = \lambda_0 + \sum_{[i:t < t_i]} \lambda_i(t)$

Background Term

Describes natural / background seismicity

Triggered Term

Describes increase in seismicity due to disturbance

• To adapt for injection induced seismicity, a term is added into the background:

$$\lambda_0(t) = \mu + c_f \times F_r(t)$$

- cf is a scale parameter
- Fr(t) is a measured injection parameter
 - Can be the injection rate, measured pressure etc.
 - When using a parameter that can be changed by the operator, different scenarios can be calculated
 - Earthquake rate if injection rate doubles?
 - Earthquake rate if injection rate is reduced by half?

STSF - Tool installation

- https://edx.netl.doe.gov/nrap/short-term-seismic-forecasting-stsf/
- The tool package is a zip file
 - Unpacking the zip file creates a folder with all files needed
- Currently only tested on Mac OSX and Linux
 - Currently not supported under Windows
- Requires Java Runtime Environment (JRE) version 8 update 40 or newer
- Requires gcc and Perl

STSF - Running the tool

- To run the GUI
 - sh bin/application
- Enter parameters will prompt a new window where all parameters are picked
 - Parameters are described in manual
 - Support for parameters in the EDX forum (link at the end)
- Run Simulation runs one simulation with chosen parameters and writes output files

STSF - Examples - Paradox Valley

- Brine water injection over 20 years
- Relatively remote area in Colorado
 - Earthquake rate per five days
 - Different injection periods lead to different seismicity in the early stages
 - STSF underrepresents changes in seismicity during constant injection
 - STSF models late changes due to large events

STSF – Examples – Basel, Switzerland

- EGS project, injection for six days before TLS triggered reduction and shut in
- Urban area in Switzerland
 - Earthquake rates for 1/4-day
 - E2,E4 and E5 are different realizations of the model
 - Different fixed and varying variables that are described in the manual

STSF – Challenges and limitations

- Tool is not designed to work as a site characterization before injection
 - Minimum number of events is needed
- Tool relies on seismic event data
 - Seismic network with high detection rate / low magnitude of completeness
 - Seismically inactive injection might not provide enough data
- Tool has not yet been applied to an area in real time
 - Only pseudo real time testing after project was complete or was in operation for a long time already

RiskCat - Background

- Developed as a collaboration between LLNL, LBNL and an independent contractor
- Makes no assumptions about the time and space distribution of seismicity, can accommodate any type of time and space non-stationarity
- Uses simulated or recorded seismic catalogs as input
- Induced seismic hazard and risk very well suited as it his highly nonstationary

RiskCat - Installation

- The RiskCat code is on gitlab
 - https://gitlab.com/NRAP/RiskCat
- Unlike other NRAP tools, RiskCat is not a GUI
 - More suited for non-lay users
- Install is described in the readme file
 - The 'make' file includes the whole installation
 - Only tested on linux and Mac computers

RiskCat – Running the tool

- ../riskcat KingIS.menu will run the example file
- Example file will create hazard and risk output for a subset of a simulation for King Island
 - Example run will both save files and PDF files with example curves
- Results are saved in the EQSimrisk folder
- The manual explains all input parameters in depth and how to manipulate them
 - Manual still work in progress and will be updated in the next phase

RiskCat - Examples / Hazard

- Based on a simulation of induced seismicity
 - Earthquake catalog with RSQsim
 - Injection with TOUGH2
- Probability of exceeding a pre-defined acceleration threshold
- Four different time periods
 - Pre (background)-, co-, post and late-post injection periods
 - Covers the whole project lifetime
- ➤ Difference most significant for largest accelerations

RiskCat – Examples / Risk

- Risk is for pre-defined surface site
 - Site conditions need to be known
 - Population density and building stock is important
- Risk of nuisance for the same four time periods as the last slide
 - Nuisance indicates lower risks, but important for induced seismicity where public acceptance of the project is key
- Nuisance risk is elevated for all levels over background (red)

RISK of NUISANCE Site1

versus % of non-acceptance

cific Northwest

RiskCat - Challenges

- RiskCat is not a GUI like other tools
- Usage of RiskCat is not straightforward, especially for lay users
- Backward combability to work with other datasets is not always guaranteed
- Technical support is not always straightforward

Questions and Discussion

Thank you!

NRAP Website: https://edx.netl.doe.gov/nrap/

Sign up for NETL EDX: https://edx.netl.doe.gov/user/register

Support for the tools is available in an online forum

https://edx.netl.doe.gov/workspace/dashboard/nrap-tools

